

Primer on LLMs for biology

James Zou

▼TextGrad

James Zou

www.james-zou.com

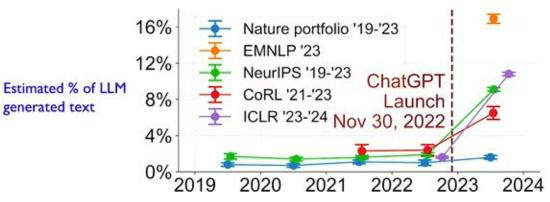
jamesz@stanford.edu


ou.com

James Zou

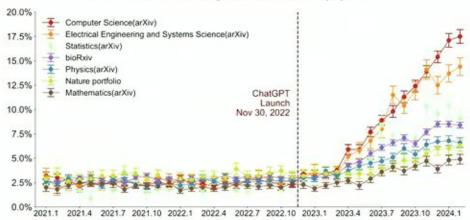
Al generated text are all around us: peer reviews

ICLR conference reviews 2020-2024


Large spikes in words that are more likely to be used by LLMs than by human reviewers.

Many reviews are substantially written by LLM

Liang et al. ICML 2024



James Zou

Increasing use of LLMs to write papers

Estimated % of LLM generated text in papers

Liang et al. arXiv 2024

Outline

- 1. Tutorial on how to build large language models.
- 2. Language models for biology.

James Zou

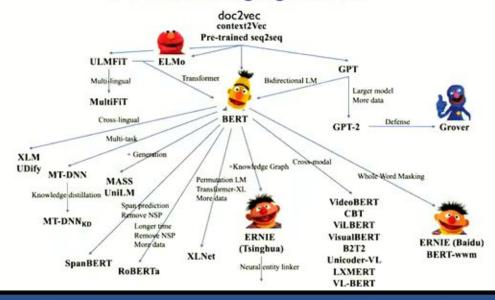
Language models pre-2017: word embeddings

They are functions (parametrized as neural networks) mapping text into vectors such that the vector geometry captures semantic meanings.

Can then use these vectors for downstream tasks

James Zou

Language models pre-training via mad libs


I would like to say a	few More	words about the
most important inve	ntion of the twentietl	h century. I am not
	ence or even	to the discovery of
Science	. The most impo	rtant invention,
in my opinion, is the	e sneaker. If it were i	not for sneakers, our
miserable ADJECTIVE	Sneakers keep me	
PLURAL NOUN from stubbing my	are slippery, and whe	n I run, they keep me

James Zou

Pre-trained language models

James Zou

Language models pre-training via mad libs

I would like to say a fe	W MORE ADJECTIVE	words about the
most important invent	ion of the twentieth	century. I am not
referring to SCIE	ENTION	to the discovery of
SCIENCE .	The most impo	rtant invention,
in my opinion, is the	sneaker. If it were n	ot for sneakers, our
PART OF BODY (PL	.URAL) would	be dirty, cold, and
miserable .	Sneakers keep me	from skidding if the
	are slippery, and whe	n I run, they keep me
from stubbing my	FLURAL NOUN	

James Zou

What is learned during mad libs training?

- Stanford University is located in _______, California. [Trivia]
- I put ____ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over ____ shoulder. [coreference]
- I went to the ocean to see the fish, turtles, seals, and ______. [lexical semantics/topic]
- Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was _____. [sentiment]

Jesse Mu CS224N

James Zou

Pretrained LLM are not aligned with human intent

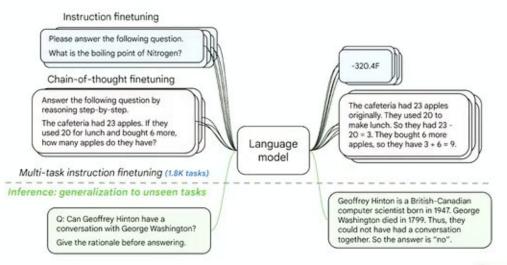
PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION GPT-3

Explain the theory of gravity to a 6 year old.

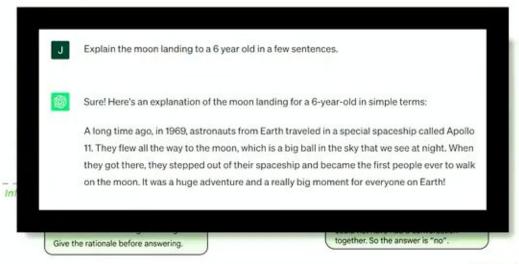
Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.


Explain evolution to a 6 year old.

James Zou

Step 2: aligning LLM to user intent with instruction fine-tuning


Chung et al. 2022

James Zou

Step 2: aligning LLM to user intent with instruction fine-tuning

Chung et al. 2022

James Zou

Step 3: Reinforcement learning with human feedback

Step 1

A prompt is

A labeler

demonstrates the

This data is used

with supervised

learning.

to fine-tune GPT-3

desired output behavior.

Collect demonstration data, and train a supervised policy.

sampled from our prompt dataset.

Explain the moon. landing to a 6 year old

Some people went

to the moon.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model

Explain the recon landing to a 5-year old

0.0.0.0

Step 5

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

Webs a story

about from

The reward model calculates a resward for the output.

The reward is used to update the policy using PPO.

James Zou

Examples of RLHF benefit

Training language models to follow instructions with human feedback

Long Oceans," Jeff We.* Xu Jiang," Diagu Alonida," Carroll L. Waiterright,"

Pamela Middain," Chong Zhang Sandhini Agarwal Katariwa Siana. Abri Raj

John Schulman. Javid Hillion. France Kellon. Luke Miller. Madde Sianes.

Amanda Ashell. Peter Wellinder. Find Christiane."

Jan Leike.* Ryun Lewer.

OpenAl

Prompt:

Create a shopping list from this recipe:

Trim the ends off zucchini. Cut zucchini in half lengthwise; scoop out pulp, leaving 1/2-in. shells. Finely thop pulp. In a skillet, cook beef, zucchini pulp, onion, mushrooms and peppers over medium heat until meat is no longer pink; drain. Remove from the heat. Add 1/2 cup cheese, betchup, salt and pepper; mix well. Spoon into the zucchini shells. Place in a greased 13x9-in. baking dish. Sprinkle with remaining cheese.

Labeler demonstration

ucchini, beef, onion, mushroom, peppers, cheese, ketchup, salt, pepper

GPT-3 175B completion:

Bake, uncovered, at 350° for 20-25 minutes or until zucchini is tender and cheese is melted.

InstructGPT 175B completion:

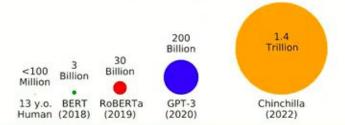
Bake, uncovered, at 350° for 20-25 minutes.

- 8 zucchini squash, ends trimmed
- I pound ground beef
- 1 cup finely chopped zucchini pulp
- I small onion, chopped
- 8 ounces diced mushrooms - 1 sweet red or green pepper, diced
- I sweet red or green pepper, dices
- 1/2 cup grated cheese
- 1/4 cup ketchup
- Salt and pepper to taste
- 1 cup shredded cheese

James Zou

Language models pre-training via mad libs

I would like to say a few	MOTE words about the
referring to SCIENCE AN INVENTION A FOOD . The m	tar poul and
ADJECTIVE . Snea	ppery, and when I run, they keep me



James Zou

What is learned during mad libs training?

- Stanford University is located in _______, California. [Trivia]
- I put ____ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over ____ shoulder. [coreference]
- I went to the ocean to see the fish, turtles, seals, and ______. [lexical semantics/topic]
- Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was _____. [sentiment]

Jesse Mu CS224N

James Zou

Step 3: Reinforcement learning with human feedback

Step 1

A prompt is

Collect demonstration data, and train a supervised policy.

sampled from our prompt dataset.

Explain the moonlanding to a 6 year old

A labeler demonstrates the desired output behavior.

This data is used

with supervised

learning.

to fine-tune GPT-3

Some people were to the moon.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

Exclain the moon

landing to a 5 year old.

A labeler ranks the outputs from best to worst.

This data is used

to train our reward model

0.0.0.0

Step 5

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward is used to update the policy using PPO.

James Zou

Systems of Al agents

AI System	Components	Design	Results
AlphaCode a	Fine-tuned LLMs for sampling and scoring programs Code execution module Clustering model	Generates up to 1 million solutions for a coding problem then filters and scores them	Matches 85th percentile of humans on coding contests
AlphaGeometry	Fine-tuned LLM Symbolic math engine	Iteratively suggests constructions in a geometry problem via LLM and checks deduced facts produced by symbolic engine	Between silver and gold International Math Olympiad medalists on timed test
Medprompt	GPT-4.LLM Nearest-neighbor search in database of correct examples LLM-generated chain-of-thought examples Multiple samples and ensembling	Answers medical questions by searching for similar examples to construct a few-shot prompt, adding model-generated chain of-thought for each example, and generating and judging up to 11 solutions	Outperforms specialized medical models like Med- PaLM used with simpler prompting strategies
Germini ota MMLU	Gemini LLM Custom inference logic	Gemini's CoT@32 inference strategy for the MMLIJ benchmark samples 32 chain -01 thought answers from the model, and returns the top choice if esough of them agree, or uses generation without chain -01 -thought if not	90.02% on MMLU, compared to 86.4% for GPT-4, with 5- shot prompting or 83.7% for Germini with 5-shot prompting

Zaharia et al. 2024

James Zou

Examples of RLHF benefit

Training language models to follow instructions with human feedback

Long Oryang* Juff We* Xu Jiang* Diopa Almidin* Carroll L. Waisweight*
Pamela Mihhkin* Chong Zhang Xandhini Ajarwal Katarisa Shana Alva Ray
Jahn Schulman Jacob Hillion France Kelton Lake Miller Middle Simon
Amanda Ashafi* Feter Welinder Faul Christians**

Jan Leibe* Ryan Lowe*

Prompt:

Create a shopping list from this recipe:

Trim the ends off zucechini. Cut zucechini in talf lengthwise; scoop out pulp, leaving 1/2-in. shells. Finelythop pulp. In a skillet, cook beef, zucechini pulp, onion, mushrooms and peppers over medium heat until meat is no longer pink; drain. Remove from the heat. Add 1/2 cup cheese, ketchup, sait and pepper; mix well. Spoon into the zucechini shells. Place in a greased 13x9-in. baking dish. Sprinkle with remaining cheese.

Labeler demonstration

ucchini, beef, onion, mushroom, peppers, cheese, ketchup, salt, pepper

GPT-3 175B completion:

Bake, uncovered, at 350° for 20-25 minutes or until zucchini is tender and cheese is melted.

InstructGPT 175B completion:

Bake, uncovered, at 350° for 20-25 minutes.

- 8 zucchini squash, ends trimmed
- I pound ground beef
- I cup finely chopped zucchini pulp
- 1 small onion, chopped
 8 ounces diced mushrooms
- I sweet red or green pepper, diced
- 1/2 cup grated cheese
- 1/4 cup ketchup
- Salt and pepper to taste
- 1 cup shredded cheese

James Zou

Step 3: Reinforcement learning with human feedback

Step 1

A prompt is

A labeler

demonstrates the

This data is used.

with supervised

learning

to fine-tune GPT-3

desired output behavior.

Collect demonstration data, and train a supervised policy.

sampled from our prompt dataset.

Explain the moon landing to a 6 year old

Some people werd to the moon.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model

Explain the moon landing to a 6 year old.

0.0.0.0 reward for

Step 5

Optimize a policy against the reward model using reinforcement learning.

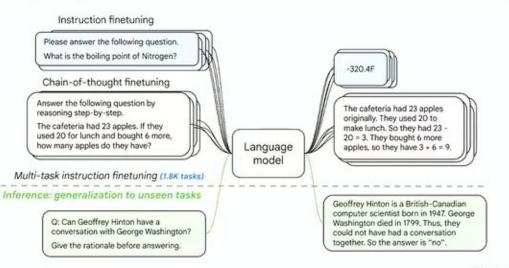
A new prompt is sampled from the dataset.

The policy generates an output.

> The reward model calculates a

The reward is used to update the policy using PPO.

the output



James Zou

Step 2: aligning LLM to user intent with instruction fine-tuning

James Zou

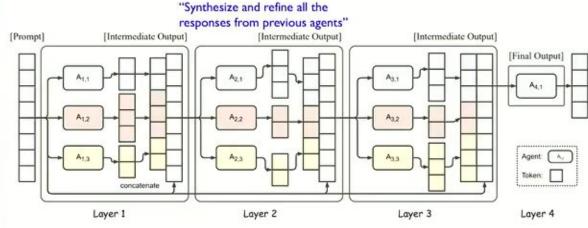
Systems of AI agents

AI System	Components	Design	Results
AlphaCode 2	Fine-tuned LLMs for sampling and scoring programs Code execution module Clustering model	Generates up to 1 million solutions for a coding problem then filters and scores them	Matches 85th percentile of humans on coding contests
AlphaGeometry	Fine-tuned LLM Symbolic math engine	Iteratively suggests constructions in a geometry problem via LLM and checks deduced facts produced by symbolic engine	Between silver and gold International Math Olympiad medalists on timed test
Medprompt	GPT-4_LLM Nearest-neighbor search in database of correct examples LLM-generated chain-of-thought examples Multiple samples and ensembling	Answers medical questions by searching for similar examples to construct a few-shot prompt, adding model-generated chain- of-thought for each example, and generating and judging up to 11 solutions	Outperforms specialized medical models like Med- PaLM used with simpler prompting strategies
Gernini on MMLU	Gernini LLM Custom inference logic	Gemini's CoT@32 inference strategy for the MMLJ/benchmark samples 32 chain of thought answers from the model, and returns the top choice if enough of them agree, or uses generation without chain of chought if not	90.04% on MMLU, compared to 86.4% for GPT-4 with 5- shot prempting or 83.7% for Germini with 5-shot prompting

Zaharia et al. 2024

James Zou

The new frontier: mixture of agents (MoA)

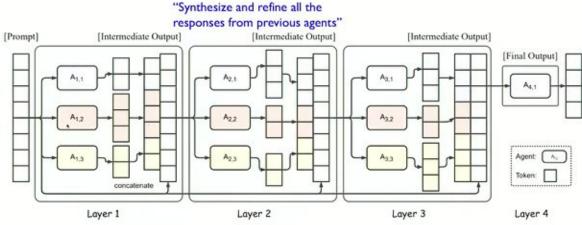

Best performances are achieved by system of multiple agents rather than one model.

James Zou

The new frontier: mixture of agents (MoA)

James Zou

MoA of open-source agents outperforms GPT4o

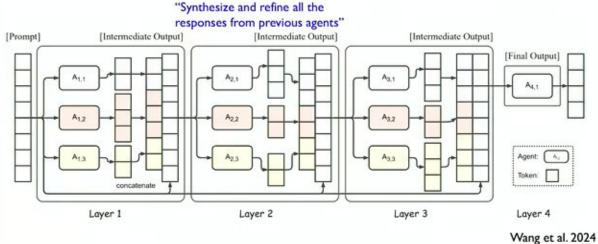


James Zou

The new frontier: mixture of agents (MoA)

James Zou

MoA of open-source agents outperforms GPT40



James Zou

The new frontier: mixture of agents (MoA)

James Zou

LLM summary

1. Masked imputation

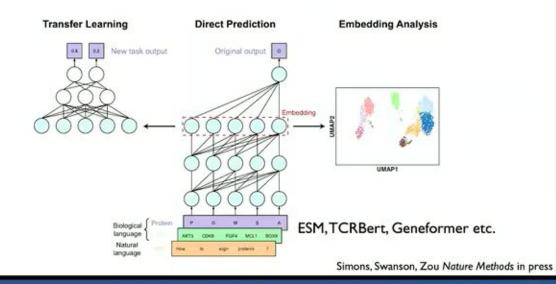
Constitute to any time against section for the constitute of the c

2. Supervised fine-tuning

3. RLHF

4. Compound agent system

Outline


- 1. Tutorial on how to build large language models.
- 2. Language models for biology.

James Zou

Applying language modeling to biology

James Zou

What are possible representations for a gene?

Nucleotide sequences

TGCTCTTGTT GCCCAGGCTG
GAATGCAATG GCCTGATCTC
TGCTCACTGC AACCTACTC
TCTCAGGTTC AAGCTATTCT
CCTGCCTCAG CCTCCCAAGT
AGCTGGGATT ACAGGTATGA
GCAACCATGC ATGGCTAATG
TTTGGATTTT TAGTAGAGAC
TAAATTTTAG TAGAGACTAGA
TTTTAGGTTT CACCATGTTG
GTCAGGTTGG TCTGGAACCC
TGACCTCAGG TGATCAGCCC

Ji et al. (2021); Poli et al. (2023); ...

James Zou

What are possible representations for a gene?

Nucleotide sequences

TGCTCTTGTT GCCCAGGCTG
GAATGCAATG GCCTGATCTC
TGCTCACTGC AACCTATTCT
CCTGCCTCAG CCTCCCAAGT
AGCTGGGATT ACAGGTATGA
GCACCATGC ATGGCTAATG
TTTGGATTTT TAGTAGAGAC
TAAATTTTAG TAGAGACTAGA
TTTTAGGTTT CACCATGTTG
GTCAGGTTGG TCTGGAACCC
TGACCTCAGG TGATCAGCCC

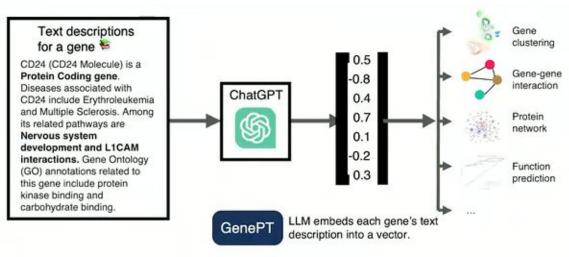
Ji et al. (2021); Poli et al. (2023); ...

Gene expression data

Theodoris et al. (2023); Cui et al. (2023); ...

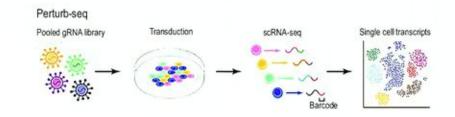
Text descriptions for a gene €

CD24 (CD24 Molecule) is a Protein Coding gene.
Diseases associated with CD24 include Erythroleukemia and Multiple Sclerosis. Among its related pathways are Nervous system development and L1CAM interactions. Gene Ontology (GO) annotations related to this gene include protein kinase binding and carbohydrate binding.


Our proposal: leverage LLMs directly

James Zou

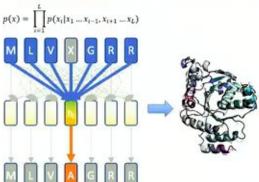
GenePT: natural language embeddings of genes and cells



James Zou

GenePT embeddings predict gene perturbations

	Replogle K562	Replogle RPEI	Tian CRISPR-a
GenePT	0.52	0.66	0.65
scGPT	0.24	0.46	0.53
Geneformer	0.41	0.64	0.64
GEARS	0.28	0.52	
		Pearson corr	



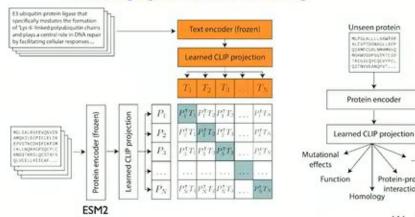
James Zou

Enhancing protein models by projection into semantic space

Protein models learns from sequence correlations

Much knowledge about proteins also captured in text

Wu, Chang and Zou. 2024



James Zou

Enhancing protein models by projection into semantic space

ProteinCLIP: projecting protein models into natural language w/ contrastive learning

Unseen protein

MLPSCALLLLASSTER

ALEYPTEGANGLIAFE GOANT COST, MININGS

MGKMOSDPSGERTCER TREADLESVESTWYPE GSTWYNEAMOPYT...

Protein encoder

Homology

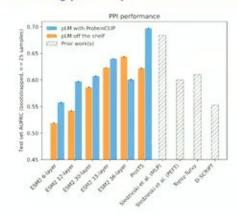
Protein-protein interactions

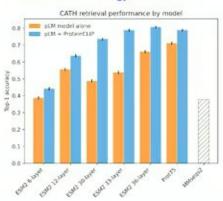
James Zou

ProteinCLIP improves prediction of mutation impact

experiments

Wu, Chang and Zou. 2024



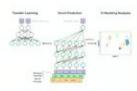

James Zou

ProteinCLIP improves prediction of protein interactions and homology

Predicting protein-protein interactions

Remote homology detection

Wu, Chang and Zou. 2024



James Zou

Language models for biology

Bio LLM primer

Simons, Swanson, Zou Nat Methods in press

Mixture of agents

Wang et al. arXiv 2024

Language as the unifying modality

Wu, Chang, Zou arXiv 2024 Chen and Zou. 2024

Thanks: Yiqun Chen, Howard Chang, Kevin Wu, Elana Simons, Kyle Swanson, Julin Wang, Jue Wang. Funding: Chan-Zuckerberg Biohub, NSF CAREER, Sloan Fellowship, AWS, Google.

